The effective model of a~stratified solid-fluid medium as a~special case of the Biot model
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 172-195
Voir la notice de l'article provenant de la source Math-Net.Ru
The Biot model is compared with the effective model of a stratified periodic elastic-fluid medium, and the parameters of the transversally isotropic Biot model that turn it into the effective model are found. In the course of this comparison, some intermediate models, which are generalizations of the effective model and particular cases of the Biot model, are considered. For all of the models, the wave fronts excited by a point source are determined. The distinguishing feature of wave fronts in the intermediate models is the occurrence of double loops on some of them. Bibl. 15 titles.
@article{ZNSL_1995_230_a13,
author = {L. A. Molotkov and A. V. Bakulin},
title = {The effective model of a~stratified solid-fluid medium as a~special case of the {Biot} model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--195},
publisher = {mathdoc},
volume = {230},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a13/}
}
TY - JOUR AU - L. A. Molotkov AU - A. V. Bakulin TI - The effective model of a~stratified solid-fluid medium as a~special case of the Biot model JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 172 EP - 195 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a13/ LA - ru ID - ZNSL_1995_230_a13 ER -
%0 Journal Article %A L. A. Molotkov %A A. V. Bakulin %T The effective model of a~stratified solid-fluid medium as a~special case of the Biot model %J Zapiski Nauchnykh Seminarov POMI %D 1995 %P 172-195 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a13/ %G ru %F ZNSL_1995_230_a13
L. A. Molotkov; A. V. Bakulin. The effective model of a~stratified solid-fluid medium as a~special case of the Biot model. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 172-195. http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a13/