Viscoelastic Rayleigh waves in a~layered structure with a~weak lateral inhomogeneity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 7-13
Voir la notice de l'article provenant de la source Math-Net.Ru
Rayleigh waves in an almost layered viscoelastic medium are studied by using the “surface” ray method based on real rays. Viscoelasticity is described in terms of the Maxwell–Boltzmann–Volterra model and, for high frequencies, is treated as perturbed perfect elasticity. In addition to the leading term of the ray asymptotics, which corresponds to the balance of energy along rays, the correction term describing anomalous displacements of the Love type is discussed. Bibl. 10 titles.
@article{ZNSL_1995_230_a0,
author = {A. V. Aref'ev and A. P. Kiselev},
title = {Viscoelastic {Rayleigh} waves in a~layered structure with a~weak lateral inhomogeneity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--13},
publisher = {mathdoc},
volume = {230},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a0/}
}
TY - JOUR AU - A. V. Aref'ev AU - A. P. Kiselev TI - Viscoelastic Rayleigh waves in a~layered structure with a~weak lateral inhomogeneity JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 7 EP - 13 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a0/ LA - ru ID - ZNSL_1995_230_a0 ER -
A. V. Aref'ev; A. P. Kiselev. Viscoelastic Rayleigh waves in a~layered structure with a~weak lateral inhomogeneity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 25, Tome 230 (1995), pp. 7-13. http://geodesic.mathdoc.fr/item/ZNSL_1995_230_a0/