On the convergence of the $QR$ algorithm with multishifts
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 275-283

Voir la notice de l'article provenant de la source Math-Net.Ru

A unified treatment of the cases of quadratic and cubic convergence of the $QR$ algorithm with multishifts is provided. The approach used is similar to that of Elsner and Watkins but does not use the notion of the distance between subspaces. Bibliography: 10 titles.
@article{ZNSL_1995_229_a9,
     author = {E. E. Tyrtyshnikov},
     title = {On the convergence of the $QR$ algorithm with multishifts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {275--283},
     publisher = {mathdoc},
     volume = {229},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a9/}
}
TY  - JOUR
AU  - E. E. Tyrtyshnikov
TI  - On the convergence of the $QR$ algorithm with multishifts
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 275
EP  - 283
VL  - 229
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a9/
LA  - ru
ID  - ZNSL_1995_229_a9
ER  - 
%0 Journal Article
%A E. E. Tyrtyshnikov
%T On the convergence of the $QR$ algorithm with multishifts
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 275-283
%V 229
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a9/
%G ru
%F ZNSL_1995_229_a9
E. E. Tyrtyshnikov. On the convergence of the $QR$ algorithm with multishifts. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 275-283. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a9/