Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 247-267
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper considers the solvability of the firsst and second initial boundary-value problems (with sticking or sliding conditions, respectively) for equations describing the motion of Oldroyd fluids and of their $\varepsilon$-approximations in classes of functions of higher smoothness. Bibliography: 23 titles.
@article{ZNSL_1995_229_a7,
author = {A. P. Oskolkov},
title = {Smooth global solutions of initial boundary-value problems for the equations of {Oldroyd} fluids and of their $\varepsilon$-approximations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {247--267},
year = {1995},
volume = {229},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a7/}
}
TY - JOUR AU - A. P. Oskolkov TI - Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 247 EP - 267 VL - 229 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a7/ LA - ru ID - ZNSL_1995_229_a7 ER -
%0 Journal Article %A A. P. Oskolkov %T Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations %J Zapiski Nauchnykh Seminarov POMI %D 1995 %P 247-267 %V 229 %U http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a7/ %G ru %F ZNSL_1995_229_a7
A. P. Oskolkov. Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 247-267. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a7/