Solution of systems of nonlinear algebraic equations in three variables. Methods and algorithms.~3
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 159-190

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to constructing methods for solving systems of nonlinear algebraic equations in three variables (SNAEs-3) is suggested. This approach is based on the interrelationship between solutions of SNAEs-3, and solutions of spectral problems for two- and three-parameter polynomial matrices and for pencils of two-parameter matrices. Methods for computing all of the finite zero-dimensional roots of a SNAE-3 requiring no initial approximations of them are suggested. Some information on $k$-dimensional $(k>0)$ roots of SNAEs-3 useful for a further analysis of them is obtained. Bibliography: 17 titles.
@article{ZNSL_1995_229_a5,
     author = {V. N. Kublanovskaya},
     title = {Solution of systems of nonlinear algebraic equations in three variables. {Methods} and algorithms.~3},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--190},
     publisher = {mathdoc},
     volume = {229},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a5/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
TI  - Solution of systems of nonlinear algebraic equations in three variables. Methods and algorithms.~3
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 159
EP  - 190
VL  - 229
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a5/
LA  - ru
ID  - ZNSL_1995_229_a5
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%T Solution of systems of nonlinear algebraic equations in three variables. Methods and algorithms.~3
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 159-190
%V 229
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a5/
%G ru
%F ZNSL_1995_229_a5
V. N. Kublanovskaya. Solution of systems of nonlinear algebraic equations in three variables. Methods and algorithms.~3. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 159-190. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a5/