Interrelations between eigenvalues and diagonal entries of Hermitian matrices implying their block diagonality
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 153-158
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A=(a_{ij})^n_{i,j=1}$ be a Hermitian matrix and let $\lambda_1\geqslant\lambda_2\geqslant\dots\geqslant\lambda_n$ denote its eigenvalues. If $\sum^k_{i=1}=\lambda_i\sum^k_{i=1}a_{ii}$, $k, then $A$ is known to be block diagonal. We show that this result easily follows from the Cauchy interlacing theorem, generalize it by introducing a convex strictly monotone function $f(t)$, and prove that in the positivedefinite case, the matrix diagonal entries can be replaced by the diagonal entries of a Schur complement. Bibliography: 4 titles.
@article{ZNSL_1995_229_a4,
author = {L. Yu. Kolotilina},
title = {Interrelations between eigenvalues and diagonal entries of {Hermitian} matrices implying their block diagonality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {153--158},
year = {1995},
volume = {229},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a4/}
}
TY - JOUR AU - L. Yu. Kolotilina TI - Interrelations between eigenvalues and diagonal entries of Hermitian matrices implying their block diagonality JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 153 EP - 158 VL - 229 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a4/ LA - ru ID - ZNSL_1995_229_a4 ER -
L. Yu. Kolotilina. Interrelations between eigenvalues and diagonal entries of Hermitian matrices implying their block diagonality. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 153-158. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a4/