Twofold deflation preconditioning of linear algebraic systems. I. Theory
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 95-152
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, preconditioning of linear algebraic systems with symmetric positive-definite coefficient matrices by deflation is considered. The twofold deflation technique for simultaneously deflating largest $s$ and smallest $s$ eigenvalues using an appropriate deflating subspace of dimension $s$ is suggested. The possibility of using the extreme Ritz vectors of the coefficient matrix for deflation is analyzed. Bibliography: 15 titles.
@article{ZNSL_1995_229_a3,
author = {L. Yu. Kolotilina},
title = {Twofold deflation preconditioning of linear algebraic {systems.~I.~Theory}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--152},
year = {1995},
volume = {229},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a3/}
}
L. Yu. Kolotilina. Twofold deflation preconditioning of linear algebraic systems. I. Theory. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 95-152. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a3/