Twofold deflation preconditioning of linear algebraic systems.~I.~Theory
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 95-152

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, preconditioning of linear algebraic systems with symmetric positive-definite coefficient matrices by deflation is considered. The twofold deflation technique for simultaneously deflating largest $s$ and smallest $s$ eigenvalues using an appropriate deflating subspace of dimension $s$ is suggested. The possibility of using the extreme Ritz vectors of the coefficient matrix for deflation is analyzed. Bibliography: 15 titles.
@article{ZNSL_1995_229_a3,
     author = {L. Yu. Kolotilina},
     title = {Twofold deflation preconditioning of linear algebraic {systems.~I.~Theory}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--152},
     publisher = {mathdoc},
     volume = {229},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a3/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Twofold deflation preconditioning of linear algebraic systems.~I.~Theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 95
EP  - 152
VL  - 229
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a3/
LA  - ru
ID  - ZNSL_1995_229_a3
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Twofold deflation preconditioning of linear algebraic systems.~I.~Theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 95-152
%V 229
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a3/
%G ru
%F ZNSL_1995_229_a3
L. Yu. Kolotilina. Twofold deflation preconditioning of linear algebraic systems.~I.~Theory. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 95-152. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a3/