On spectral properties of multiparameter polynomial matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 284-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Spectral problems for multiparameter polynomial matrices are considered. The notions of the spectrum (including those of its finite, infinite, regular, and singular parts), of the analytic multiplicity of a point of the spectrum, of bases of null-spaces, of Jordan $s$-semilattices of vectors and of generating vectors, and of the geometric and complete geometric multiplicities of a point of the spectrum are introduced. The properties of the above characteristics are described. A method for linearizing a polynomial matrix (with respect to one or several parameters) by passing to the accompanying pencils is suggested. The interrelations between spectral characteristics of a polynomial matrix and those of the accompanying pencils are established. Bibliography: 12 titles.
@article{ZNSL_1995_229_a10,
     author = {V. B. Khazanov},
     title = {On spectral properties of multiparameter polynomial matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {284--321},
     year = {1995},
     volume = {229},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a10/}
}
TY  - JOUR
AU  - V. B. Khazanov
TI  - On spectral properties of multiparameter polynomial matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 284
EP  - 321
VL  - 229
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a10/
LA  - ru
ID  - ZNSL_1995_229_a10
ER  - 
%0 Journal Article
%A V. B. Khazanov
%T On spectral properties of multiparameter polynomial matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 284-321
%V 229
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a10/
%G ru
%F ZNSL_1995_229_a10
V. B. Khazanov. On spectral properties of multiparameter polynomial matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XI, Tome 229 (1995), pp. 284-321. http://geodesic.mathdoc.fr/item/ZNSL_1995_229_a10/