A local duality theorem for categories of modules
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 66-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be an associative ring with identity and let $_\Lambda\mathfrak M$ be the category of left unitary $\Lambda$-modules. A subcateqory $\mathcal M$ of the category $_\Lambda\mathfrak M$ is said to be small if the pairwise nonisomorphic objects of $\mathcal M$ form a set. The main result of this paper consists of the fact that for every small full subcategory $\mathcal M$, there exists a ring $\Gamma$ such that $\mathcal M$ is dual to a small full subcategory of the category $_\Gamma\mathfrak M$. Some applications of this result are indicated. Bibliography: 3 titles.
@article{ZNSL_1995_227_a8,
     author = {M. B. Zvyagina},
     title = {A local duality theorem for categories of modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {227},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a8/}
}
TY  - JOUR
AU  - M. B. Zvyagina
TI  - A local duality theorem for categories of modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 66
EP  - 73
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a8/
LA  - ru
ID  - ZNSL_1995_227_a8
ER  - 
%0 Journal Article
%A M. B. Zvyagina
%T A local duality theorem for categories of modules
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 66-73
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a8/
%G ru
%F ZNSL_1995_227_a8
M. B. Zvyagina. A local duality theorem for categories of modules. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 66-73. http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a8/