On a maximal torus in subgroups of a general linear group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 15-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $k$ be a field, $K/k$ a finite extension of it of degree $n$. We denote $G=\operatorname{Aut}(_kK)$, $G_0=\operatorname{Aut}(_kK)$ and fix in $K$ a basis $\omega_1,\dots,\omega_n$ over $k$. In this basis, to any automorphism group of $_kK$ there corresponds a matrix group, which is denoted by the same symbol. Let $G'\le G$. In this paper, the conditions under which $G'\cap G_0$ is a maximal torus in $G'$ are studied. The calculation of $N_{G'}(G'\cap G_0)$ is carried out, provided that thee conditions are fulfilled. The case $G'=\operatorname{SL}(_kK)$ is of particular interset. It is known that for Galois extensions and for extensions of algebraic number fields, $G'\cap G_0$ is a maximal torus in $G'$. Bibligraphy: 2 titles.
@article{ZNSL_1995_227_a2,
     author = {Z. I. Borevich and A. A. Panin},
     title = {On a~maximal torus in subgroups of a~general linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--22},
     year = {1995},
     volume = {227},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a2/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - A. A. Panin
TI  - On a maximal torus in subgroups of a general linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 15
EP  - 22
VL  - 227
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a2/
LA  - ru
ID  - ZNSL_1995_227_a2
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A A. A. Panin
%T On a maximal torus in subgroups of a general linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 15-22
%V 227
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a2/
%G ru
%F ZNSL_1995_227_a2
Z. I. Borevich; A. A. Panin. On a maximal torus in subgroups of a general linear group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 15-22. http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a2/