Sufficient conditions for the existence of a left quotient ring of a ring decomposed into a direct sum of left ideals
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 9-14
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R=P_1\oplus P_2\oplus\dots\oplus P_n$ be a decomposition of a ring into a direct sum of indecomposable left ideals. Assume that these ideals possess the following properties: (1) any nonzero homomorphisms $\varphi\colon P_i\to P_j$ is a monomorphism; (2) if subideals $Q_1,Q_2$ of the ideal $P_j$ are isomorphic to the ideal $P_i$, then there exists a subideal $Q_3\subseteq Q_1\cap Q_2$, which is also isomorphic to $P_i$. It is proved that, under these asumptions, a left quotient ring of the ring $R$ exists. This left quotient ring inherits properties (1), (2) and satisfies condition (3): any nonzero homomorphism $\varphi\colon P_i\to P_i$ is an automorphism of the ideal $P_i$. Bibliography: 2 titles.
@article{ZNSL_1995_227_a1,
author = {S. L. Berlov},
title = {Sufficient conditions for the existence of a~left quotient ring of a~ring decomposed into a~direct sum of left ideals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--14},
year = {1995},
volume = {227},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a1/}
}
TY - JOUR AU - S. L. Berlov TI - Sufficient conditions for the existence of a left quotient ring of a ring decomposed into a direct sum of left ideals JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 9 EP - 14 VL - 227 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a1/ LA - ru ID - ZNSL_1995_227_a1 ER -
S. L. Berlov. Sufficient conditions for the existence of a left quotient ring of a ring decomposed into a direct sum of left ideals. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 9-14. http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a1/