Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 5-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of invertible squares is computed, provided that each square occurs in the sum no more than a fixed number of times. For prime $d$ an exhaustive answer is given in terms of the class number and the fundamental unit of the real quadratic field $\mathbb Q(\sqrt d)$. Bibliography: 5 titles.
@article{ZNSL_1995_227_a0,
     author = {G. V. Abramov and P. M. Vinnik},
     title = {Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a~sum of squares},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--8},
     year = {1995},
     volume = {227},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/}
}
TY  - JOUR
AU  - G. V. Abramov
AU  - P. M. Vinnik
TI  - Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 5
EP  - 8
VL  - 227
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/
LA  - ru
ID  - ZNSL_1995_227_a0
ER  - 
%0 Journal Article
%A G. V. Abramov
%A P. M. Vinnik
%T Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 5-8
%V 227
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/
%G ru
%F ZNSL_1995_227_a0
G. V. Abramov; P. M. Vinnik. Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/