Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 5-8
Cet article a éte moissonné depuis la source Math-Net.Ru
The number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of invertible squares is computed, provided that each square occurs in the sum no more than a fixed number of times. For prime $d$ an exhaustive answer is given in terms of the class number and the fundamental unit of the real quadratic field $\mathbb Q(\sqrt d)$. Bibliography: 5 titles.
@article{ZNSL_1995_227_a0,
author = {G. V. Abramov and P. M. Vinnik},
title = {Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a~sum of squares},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--8},
year = {1995},
volume = {227},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/}
}
TY - JOUR AU - G. V. Abramov AU - P. M. Vinnik TI - Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 5 EP - 8 VL - 227 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/ LA - ru ID - ZNSL_1995_227_a0 ER -
%0 Journal Article %A G. V. Abramov %A P. M. Vinnik %T Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares %J Zapiski Nauchnykh Seminarov POMI %D 1995 %P 5-8 %V 227 %U http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/ %G ru %F ZNSL_1995_227_a0
G. V. Abramov; P. M. Vinnik. Computation of the number of representations of the elements of the ring $\mathbb Z/d\mathbb Z$ as a sum of squares. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 4, Tome 227 (1995), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_1995_227_a0/