The penalty method for the equations of viscoelastic media
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 267-278
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we study the global classical solvability of the first initial-boundary value problem for some three-dimensional equations and the convergence of solutions of the equations to the classical solutions of the first initial-boundary value problem for the Navier–Stokes equations as $\varepsilon\to0$. Bibliography: 35 titles.
@article{ZNSL_1995_224_a20,
author = {A. P. Oskolkov},
title = {The penalty method for the equations of viscoelastic media},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {267--278},
publisher = {mathdoc},
volume = {224},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a20/}
}
A. P. Oskolkov. The penalty method for the equations of viscoelastic media. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 267-278. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a20/