The penalty method for the equations of viscoelastic media
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 267-278

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the global classical solvability of the first initial-boundary value problem for some three-dimensional equations and the convergence of solutions of the equations to the classical solutions of the first initial-boundary value problem for the Navier–Stokes equations as $\varepsilon\to0$. Bibliography: 35 titles.
@article{ZNSL_1995_224_a20,
     author = {A. P. Oskolkov},
     title = {The penalty method for the equations of viscoelastic media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--278},
     publisher = {mathdoc},
     volume = {224},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a20/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - The penalty method for the equations of viscoelastic media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 267
EP  - 278
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a20/
LA  - en
ID  - ZNSL_1995_224_a20
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T The penalty method for the equations of viscoelastic media
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 267-278
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a20/
%G en
%F ZNSL_1995_224_a20
A. P. Oskolkov. The penalty method for the equations of viscoelastic media. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 267-278. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a20/