A dynamical system connected with the inhomogeneous six-vertex model.~II. Evolution of orthogonal and symplectic matrices: An algebraic-geometric description
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 225-239

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper continues part I (Zap. Nauchn. Semin. POMI, 215, 178–196 (1994)), in which a dynamical system in discrete time generazed by a birational transformation acting on the equivalence classes of matrices of specific form is introduced. We study reductions of this system on orthogonal and symmetric matrices by means of algebraic geometry. Bibliography: 4 titles.
@article{ZNSL_1995_224_a17,
     author = {I. G. Korepanov},
     title = {A dynamical system connected with the inhomogeneous six-vertex {model.~II.} {Evolution} of orthogonal and symplectic matrices: {An} algebraic-geometric description},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {224},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a17/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - A dynamical system connected with the inhomogeneous six-vertex model.~II. Evolution of orthogonal and symplectic matrices: An algebraic-geometric description
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 225
EP  - 239
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a17/
LA  - ru
ID  - ZNSL_1995_224_a17
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T A dynamical system connected with the inhomogeneous six-vertex model.~II. Evolution of orthogonal and symplectic matrices: An algebraic-geometric description
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 225-239
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a17/
%G ru
%F ZNSL_1995_224_a17
I. G. Korepanov. A dynamical system connected with the inhomogeneous six-vertex model.~II. Evolution of orthogonal and symplectic matrices: An algebraic-geometric description. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 225-239. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a17/