Yang-baxterization of the quantum dilogarithm
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 146-154
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new solution of the Yang–Baxter equation with spectral parameter is found. The resulting $R$-matrix $R(x)$ is an operator in $\mathcal H\otimes\mathcal H$, where $\mathcal H=L_2(\mathbb R)$. This $R$-matrix is required to justify the solution of the sine-Gordon model on the discrete space-time. Bibliography: 18 titles.
			
            
            
            
          
        
      @article{ZNSL_1995_224_a11,
     author = {A. Yu. Volkov and L. D. Faddeev},
     title = {Yang-baxterization of the quantum dilogarithm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {224},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/}
}
                      
                      
                    A. Yu. Volkov; L. D. Faddeev. Yang-baxterization of the quantum dilogarithm. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 146-154. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/