Yang-baxterization of the quantum dilogarithm
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 146-154

Voir la notice de l'article provenant de la source Math-Net.Ru

A new solution of the Yang–Baxter equation with spectral parameter is found. The resulting $R$-matrix $R(x)$ is an operator in $\mathcal H\otimes\mathcal H$, where $\mathcal H=L_2(\mathbb R)$. This $R$-matrix is required to justify the solution of the sine-Gordon model on the discrete space-time. Bibliography: 18 titles.
@article{ZNSL_1995_224_a11,
     author = {A. Yu. Volkov and L. D. Faddeev},
     title = {Yang-baxterization of the quantum dilogarithm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {224},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/}
}
TY  - JOUR
AU  - A. Yu. Volkov
AU  - L. D. Faddeev
TI  - Yang-baxterization of the quantum dilogarithm
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 146
EP  - 154
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/
LA  - ru
ID  - ZNSL_1995_224_a11
ER  - 
%0 Journal Article
%A A. Yu. Volkov
%A L. D. Faddeev
%T Yang-baxterization of the quantum dilogarithm
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 146-154
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/
%G ru
%F ZNSL_1995_224_a11
A. Yu. Volkov; L. D. Faddeev. Yang-baxterization of the quantum dilogarithm. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 146-154. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/