Yang-baxterization of the quantum dilogarithm
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 146-154
Cet article a éte moissonné depuis la source Math-Net.Ru
A new solution of the Yang–Baxter equation with spectral parameter is found. The resulting $R$-matrix $R(x)$ is an operator in $\mathcal H\otimes\mathcal H$, where $\mathcal H=L_2(\mathbb R)$. This $R$-matrix is required to justify the solution of the sine-Gordon model on the discrete space-time. Bibliography: 18 titles.
@article{ZNSL_1995_224_a11,
author = {A. Yu. Volkov and L. D. Faddeev},
title = {Yang-baxterization of the quantum dilogarithm},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--154},
year = {1995},
volume = {224},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/}
}
A. Yu. Volkov; L. D. Faddeev. Yang-baxterization of the quantum dilogarithm. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 146-154. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a11/