Stick breaking process generated by virtual permutations with Ewens distribution
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 162-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Given a sequence $x$ of points in the unit interval, we associate with it a virtual permutation $w=w(x)$ (that is, a sequence $w$ of permutations $w_n\in\mathfrak S_n$ such that for all $n=1,2,\dots$, $w_{n-1}=w'_n$ is obtained from $w_n$ by removing the last element $n$ from its cycle). We introduce a detailed version of the well-known stick breaking process generating a random sequence $x$. It is proved that the associated random virtual permutation $w(x)$ has a Ewens distribution. Up to subsets of zero measure, the space $\mathfrak S_n=\varprojlim\mathfrak S_n$ of virtual permutations is identified with the cube $[0,1]^\infty$. Bibliography: 8 titles.
@article{ZNSL_1995_223_a9,
     author = {S. V. Kerov and N. V. Tsilevich},
     title = {Stick breaking process generated by virtual permutations with {Ewens} distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--180},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a9/}
}
TY  - JOUR
AU  - S. V. Kerov
AU  - N. V. Tsilevich
TI  - Stick breaking process generated by virtual permutations with Ewens distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 162
EP  - 180
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a9/
LA  - ru
ID  - ZNSL_1995_223_a9
ER  - 
%0 Journal Article
%A S. V. Kerov
%A N. V. Tsilevich
%T Stick breaking process generated by virtual permutations with Ewens distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 162-180
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a9/
%G ru
%F ZNSL_1995_223_a9
S. V. Kerov; N. V. Tsilevich. Stick breaking process generated by virtual permutations with Ewens distribution. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 162-180. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a9/