Distribution of cycle lengths of infinite permutations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 148-161
Cet article a éte moissonné depuis la source Math-Net.Ru
The aim of this paper is to show that the well-studied families of GEM and Poisson–Dirichlet measures may be obtained as distributions of normalized cycle lengths on the space of vitual pemutations (i.e., elements of a projective limit of symmetric groups). Two characterizations of Ewens distibutions are given. Bibliography: 9 titles.
@article{ZNSL_1995_223_a8,
author = {N. V. Tsilevich},
title = {Distribution of cycle lengths of infinite permutations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--161},
year = {1995},
volume = {223},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a8/}
}
N. V. Tsilevich. Distribution of cycle lengths of infinite permutations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 148-161. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a8/