Distribution of cycle lengths of infinite permutations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 148-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this paper is to show that the well-studied families of GEM and Poisson–Dirichlet measures may be obtained as distributions of normalized cycle lengths on the space of vitual pemutations (i.e., elements of a projective limit of symmetric groups). Two characterizations of Ewens distibutions are given. Bibliography: 9 titles.
@article{ZNSL_1995_223_a8,
     author = {N. V. Tsilevich},
     title = {Distribution of cycle lengths of infinite permutations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--161},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a8/}
}
TY  - JOUR
AU  - N. V. Tsilevich
TI  - Distribution of cycle lengths of infinite permutations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 148
EP  - 161
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a8/
LA  - ru
ID  - ZNSL_1995_223_a8
ER  - 
%0 Journal Article
%A N. V. Tsilevich
%T Distribution of cycle lengths of infinite permutations
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 148-161
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a8/
%G ru
%F ZNSL_1995_223_a8
N. V. Tsilevich. Distribution of cycle lengths of infinite permutations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 148-161. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a8/