Some remarks on homoclinic groups of hyperbolic toral automorphisms
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 140-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The homoclinic group (an invariant with respect to topological conjugacy) for hyperbolic toral automorphisms is determined. Certain conditions are given for conjugacy of a homeomorphism of a compact space to hyperbolic toral automorphism. Bibliography: 7 titles.
@article{ZNSL_1995_223_a7,
     author = {M. I. Gordin},
     title = {Some remarks on homoclinic groups of hyperbolic toral automorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--147},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a7/}
}
TY  - JOUR
AU  - M. I. Gordin
TI  - Some remarks on homoclinic groups of hyperbolic toral automorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 140
EP  - 147
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a7/
LA  - ru
ID  - ZNSL_1995_223_a7
ER  - 
%0 Journal Article
%A M. I. Gordin
%T Some remarks on homoclinic groups of hyperbolic toral automorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 140-147
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a7/
%G ru
%F ZNSL_1995_223_a7
M. I. Gordin. Some remarks on homoclinic groups of hyperbolic toral automorphisms. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 140-147. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a7/