On construction of a symbolic realization of hyperbolic automorphisms of the torus
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 137-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The general method of constructing an isomorphism between hyperbolic automorphisms of the torus and hyperbolic shifts, suggested by A. M. Vershik, is shown to be inapplicable to a wide class of automorphisms, namely, to those whose characteristic polynomial has at least two roots of different moduli outside the unit disk. Bibliography: 3 titles.
@article{ZNSL_1995_223_a6,
     author = {E. A. Hirsch},
     title = {On construction of a~symbolic realization of hyperbolic automorphisms of the torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--139},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a6/}
}
TY  - JOUR
AU  - E. A. Hirsch
TI  - On construction of a symbolic realization of hyperbolic automorphisms of the torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 137
EP  - 139
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a6/
LA  - ru
ID  - ZNSL_1995_223_a6
ER  - 
%0 Journal Article
%A E. A. Hirsch
%T On construction of a symbolic realization of hyperbolic automorphisms of the torus
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 137-139
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a6/
%G ru
%F ZNSL_1995_223_a6
E. A. Hirsch. On construction of a symbolic realization of hyperbolic automorphisms of the torus. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 137-139. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a6/