On construction of a symbolic realization of hyperbolic automorphisms of the torus
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 137-139
Cet article a éte moissonné depuis la source Math-Net.Ru
The general method of constructing an isomorphism between hyperbolic automorphisms of the torus and hyperbolic shifts, suggested by A. M. Vershik, is shown to be inapplicable to a wide class of automorphisms, namely, to those whose characteristic polynomial has at least two roots of different moduli outside the unit disk. Bibliography: 3 titles.
@article{ZNSL_1995_223_a6,
author = {E. A. Hirsch},
title = {On construction of a~symbolic realization of hyperbolic automorphisms of the torus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--139},
year = {1995},
volume = {223},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a6/}
}
E. A. Hirsch. On construction of a symbolic realization of hyperbolic automorphisms of the torus. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 137-139. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a6/