The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 120-126
Cet article a éte moissonné depuis la source Math-Net.Ru
For any ergodic transformation $T$ of the Lebesgue space $(X,\mu)$ it is possible to introduce the topology $\tau$ into $X$ such that a) with provided topology $X$ becomes the totally disconnected compact (Cantor set) with the structure of a Markov compact and $\mu$ becomes a Borel Markov measure. b) $T$ becomes a minimal strictly ergodic homeomorphism of $(X,\tau)$; c) orbit partition of $T$ is the tail partition of the Markov compact upto two classes of the partition. The structure of Markov compact is the same as a structure of the pathes in the Bratteli diagram of some $AF$-algebra. Bibliography: 19 titles.
@article{ZNSL_1995_223_a4,
author = {A. M. Vershik},
title = {The adic realizations of the ergodic actions with the homeomorphisms of the {Markov} compact and the ordered {Bratteli} diagrams},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--126},
year = {1995},
volume = {223},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a4/}
}
TY - JOUR AU - A. M. Vershik TI - The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 120 EP - 126 VL - 223 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a4/ LA - en ID - ZNSL_1995_223_a4 ER -
%0 Journal Article %A A. M. Vershik %T The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams %J Zapiski Nauchnykh Seminarov POMI %D 1995 %P 120-126 %V 223 %U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a4/ %G en %F ZNSL_1995_223_a4
A. M. Vershik. The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 120-126. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a4/