Transitive groups with irreducible representations of bounded degree
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 108-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A well-known theorem of Jordan states that there ezists a function $J(d)$ of a positive integer $d$ for which the following holds: if $G$ is a finite group having a faithful linear representation over $\mathbb C$ of degree $d$, then $G$ has a normal Abelian subgroup $A$ with $[G:A]\le J(d)$. We show that if $G$ is a transitive permutation group and $d$ is the maximal degree of irreducible representations of $G$ entering its permutation representation, then there exists a normal solvable subgroup $A$ of $G$ such that $[G:A]\le J(d)^{\log_2d}$. Bibliography: 7 titles.
@article{ZNSL_1995_223_a3,
     author = {S. A. Evdokimov and I. N. Ponomarenko},
     title = {Transitive groups with irreducible representations of bounded degree},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--119},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a3/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - I. N. Ponomarenko
TI  - Transitive groups with irreducible representations of bounded degree
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 108
EP  - 119
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a3/
LA  - ru
ID  - ZNSL_1995_223_a3
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A I. N. Ponomarenko
%T Transitive groups with irreducible representations of bounded degree
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 108-119
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a3/
%G ru
%F ZNSL_1995_223_a3
S. A. Evdokimov; I. N. Ponomarenko. Transitive groups with irreducible representations of bounded degree. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 108-119. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a3/