Tame representations of the Hecke algebra $H(\infty)$ and the $q$-analogs of partial bijections
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 92-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper the $q$-analogs of the semigroup of partial bijections are introduced and studied. They are applied to the description of the so-called tame representations of the infinite-dimensional Hecke algebra. Bibliography: 3 titles.
@article{ZNSL_1995_223_a2,
     author = {A. Okun'kov},
     title = {Tame representations of the {Hecke} algebra $H(\infty)$ and the $q$-analogs of partial bijections},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--107},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a2/}
}
TY  - JOUR
AU  - A. Okun'kov
TI  - Tame representations of the Hecke algebra $H(\infty)$ and the $q$-analogs of partial bijections
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 92
EP  - 107
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a2/
LA  - ru
ID  - ZNSL_1995_223_a2
ER  - 
%0 Journal Article
%A A. Okun'kov
%T Tame representations of the Hecke algebra $H(\infty)$ and the $q$-analogs of partial bijections
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 92-107
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a2/
%G ru
%F ZNSL_1995_223_a2
A. Okun'kov. Tame representations of the Hecke algebra $H(\infty)$ and the $q$-analogs of partial bijections. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 92-107. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a2/