Singularity and absolute continuity of measures associated with the rotation of a~circle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 323-336

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of whether the infinite convolution of certain discrete distributions naturally associated with the rotation of a circle through an irrational angle of $\alpha$ is singular or absolutely continuous for different values of $\alpha$ is studied. Bibliography: 9 titles.
@article{ZNSL_1995_223_a17,
     author = {N. A. Sidorov},
     title = {Singularity and absolute continuity of measures associated with the rotation of a~circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {223},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a17/}
}
TY  - JOUR
AU  - N. A. Sidorov
TI  - Singularity and absolute continuity of measures associated with the rotation of a~circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 323
EP  - 336
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a17/
LA  - ru
ID  - ZNSL_1995_223_a17
ER  - 
%0 Journal Article
%A N. A. Sidorov
%T Singularity and absolute continuity of measures associated with the rotation of a~circle
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 323-336
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a17/
%G ru
%F ZNSL_1995_223_a17
N. A. Sidorov. Singularity and absolute continuity of measures associated with the rotation of a~circle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 323-336. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a17/