Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 313-322

Voir la notice de l'article provenant de la source Math-Net.Ru

For rotational expansions introduced in [1], conditions under which the law of large numbers, the strong law of large numbers, or the central limit theorem hold for Markov sequences of coefficients, are found. Answers are given in terms of the rate of growth of the quotients $a_n$. Bibliography: 8 titles.
@article{ZNSL_1995_223_a16,
     author = {N. A. Sidorov},
     title = {Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {313--322},
     publisher = {mathdoc},
     volume = {223},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/}
}
TY  - JOUR
AU  - N. A. Sidorov
TI  - Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 313
EP  - 322
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/
LA  - ru
ID  - ZNSL_1995_223_a16
ER  - 
%0 Journal Article
%A N. A. Sidorov
%T Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 313-322
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/
%G ru
%F ZNSL_1995_223_a16
N. A. Sidorov. Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 313-322. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/