Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 313-322
Cet article a éte moissonné depuis la source Math-Net.Ru
For rotational expansions introduced in [1], conditions under which the law of large numbers, the strong law of large numbers, or the central limit theorem hold for Markov sequences of coefficients, are found. Answers are given in terms of the rate of growth of the quotients $a_n$. Bibliography: 8 titles.
@article{ZNSL_1995_223_a16,
author = {N. A. Sidorov},
title = {Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {313--322},
year = {1995},
volume = {223},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/}
}
TY - JOUR AU - N. A. Sidorov TI - Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 313 EP - 322 VL - 223 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/ LA - ru ID - ZNSL_1995_223_a16 ER -
N. A. Sidorov. Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 313-322. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a16/