The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 280-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $u_1=1$, $u_2=2$, $u_3,\dots$ be the sequence of Fibonacci numbers. A Fibonacci partition of a natural number $n$ is a partition of $n$ into different Fibonacci numbers. In this paper it is proved that the set of Fibonacci partitions of a natural number, partially ordered with respect to refinement is the lattice of ideals of a multizigzag. On the basis of this theorem we obtain some results concerning the coefficients of the Taylor series of infinite products $$ \prod_{i=1}^{+\infty}(1+zq^{u_i})=1+\sum_{k=1}^{+\infty}a_k(z)q^k, $$ where $z=\pm1$, $-\frac12\pm i\frac{\sqrt3}2$, $\pm i$. Bibliography: 6 titles.
@article{ZNSL_1995_223_a15,
     author = {I. A. Pushkarev},
     title = {The lattices of ideals of multizigzags and the enumeration of {Fibonacci} partitions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {280--312},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a15/}
}
TY  - JOUR
AU  - I. A. Pushkarev
TI  - The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 280
EP  - 312
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a15/
LA  - ru
ID  - ZNSL_1995_223_a15
ER  - 
%0 Journal Article
%A I. A. Pushkarev
%T The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 280-312
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a15/
%G ru
%F ZNSL_1995_223_a15
I. A. Pushkarev. The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 280-312. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a15/