Asymptotics of random convex polygonal lines
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 263-279

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with the limit shape of random plane convex polygonal lines whose edges are independent and identically distributed, with finite first moment. The smoothness of a limit curve depends on some properties of the distribution. The limit curve is determined by the projection of the distribution to the unit circle. This correspondence between limit curves and measures on the unit circle is proved to be a bijection. The emphasis is on limit distributions of deviations of random polygonal lines from a limit curve. Normed differences of Minkowski support functions converge to a Gaussian limit process. The covariance of this process can be found in terms of the initial distribution. In the case of uniform distribution on the unit circle, a formula for the covariance is found. The main result is that a.s. sample functions of the limit process have continuous first derivative satisfying the Hölder condition of order $a$, for any fixed $a$ with $0$. Bibliography: 7 titles.
@article{ZNSL_1995_223_a14,
     author = {B. N. Vilkov},
     title = {Asymptotics of random convex polygonal lines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {263--279},
     publisher = {mathdoc},
     volume = {223},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a14/}
}
TY  - JOUR
AU  - B. N. Vilkov
TI  - Asymptotics of random convex polygonal lines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 263
EP  - 279
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a14/
LA  - ru
ID  - ZNSL_1995_223_a14
ER  - 
%0 Journal Article
%A B. N. Vilkov
%T Asymptotics of random convex polygonal lines
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 263-279
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a14/
%G ru
%F ZNSL_1995_223_a14
B. N. Vilkov. Asymptotics of random convex polygonal lines. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 263-279. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a14/