Asymptotics of random partitions of a set
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 227-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper contains two results on the asymptotic behavior of uniform probability measure on partitions of a finite set as its cardinality tends to infinity. The first one states that there exists a normalization of the corresponding Young diagrams such that the induced measure has a weak limit. This limit is shown to be a $\delta$-measure supported by the unit square (Theorem 1). It implies that the majority of partition blocks have approximately the same length. Theorem 2 clarifies the limit distribution of these blocks. The techniques used can also be useful for deriving a range of analogous results. Bibliography: 13 titles.
@article{ZNSL_1995_223_a12,
     author = {Yu. V. Yakubovich},
     title = {Asymptotics of random partitions of a~set},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--250},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a12/}
}
TY  - JOUR
AU  - Yu. V. Yakubovich
TI  - Asymptotics of random partitions of a set
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 227
EP  - 250
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a12/
LA  - ru
ID  - ZNSL_1995_223_a12
ER  - 
%0 Journal Article
%A Yu. V. Yakubovich
%T Asymptotics of random partitions of a set
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 227-250
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a12/
%G ru
%F ZNSL_1995_223_a12
Yu. V. Yakubovich. Asymptotics of random partitions of a set. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 227-250. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a12/