On the number of rim hook tableaux
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 219-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A hooklength formula for the number of rim hook tableaux is used to obtain an inequality relating the number of rim hook tableaux of a given shape to the number of standard Young tableaux of the same shape. This provides an upper bound for a certain family of characters of the symmetric group. The analogues for shifted shapes and rooted trees are also given. Bibliography: 13 titles.
@article{ZNSL_1995_223_a11,
     author = {S. V. Fomin and Nathan Lulov},
     title = {On the number of rim hook tableaux},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--226},
     year = {1995},
     volume = {223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a11/}
}
TY  - JOUR
AU  - S. V. Fomin
AU  - Nathan Lulov
TI  - On the number of rim hook tableaux
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 219
EP  - 226
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a11/
LA  - en
ID  - ZNSL_1995_223_a11
ER  - 
%0 Journal Article
%A S. V. Fomin
%A Nathan Lulov
%T On the number of rim hook tableaux
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 219-226
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a11/
%G en
%F ZNSL_1995_223_a11
S. V. Fomin; Nathan Lulov. On the number of rim hook tableaux. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 219-226. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a11/