Subordinators and the actions of permutations with quasi-invariant measure
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 181-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We introduce a class of probability measures in the space of virtual permutations associated with subordinators (i.e., processes with stationary positive independent increments). We prove that these measures are quasi-invariant under both left and right actions of the countable symmetric group $\mathfrak S_\infty$, and a simple formula for the corresponding cocycle is obtained. In case of a stable subordinator, we find the value of the spherical function of a constant vector on the class of transpositions. Bibliography: 19 titles.
@article{ZNSL_1995_223_a10,
     author = {S. V. Kerov},
     title = {Subordinators and the actions of permutations with quasi-invariant measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--218},
     year = {1995},
     volume = {223},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a10/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - Subordinators and the actions of permutations with quasi-invariant measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 181
EP  - 218
VL  - 223
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a10/
LA  - ru
ID  - ZNSL_1995_223_a10
ER  - 
%0 Journal Article
%A S. V. Kerov
%T Subordinators and the actions of permutations with quasi-invariant measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 181-218
%V 223
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a10/
%G ru
%F ZNSL_1995_223_a10
S. V. Kerov. Subordinators and the actions of permutations with quasi-invariant measure. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Tome 223 (1995), pp. 181-218. http://geodesic.mathdoc.fr/item/ZNSL_1995_223_a10/