Estimates of the Bergman kernel for some pseudoconvex domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 222-245

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $K_\Omega(z,\zeta)$ the Bergman kernel of a pseudoconvex domain $\Omega$. For some classes of domains $\Omega$, a relationship is found between the rate of increase of $K_\Omega(z,z)$ as $z$ tends to $\partial\Omega$, and a purely geometric property of $\Omega$. Bibliography: 5 titles.
@article{ZNSL_1995_222_a8,
     author = {N. A. Shirokov},
     title = {Estimates of the {Bergman} kernel for some pseudoconvex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--245},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a8/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Estimates of the Bergman kernel for some pseudoconvex domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 222
EP  - 245
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a8/
LA  - ru
ID  - ZNSL_1995_222_a8
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Estimates of the Bergman kernel for some pseudoconvex domains
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 222-245
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a8/
%G ru
%F ZNSL_1995_222_a8
N. A. Shirokov. Estimates of the Bergman kernel for some pseudoconvex domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 222-245. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a8/