Estimates of the Bergman kernel for some pseudoconvex domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 222-245
Voir la notice de l'article provenant de la source Math-Net.Ru
Denote by $K_\Omega(z,\zeta)$ the Bergman kernel of a pseudoconvex domain $\Omega$. For some classes of domains $\Omega$, a relationship is found between the rate of increase of $K_\Omega(z,z)$ as $z$ tends to $\partial\Omega$, and a purely geometric property of $\Omega$. Bibliography: 5 titles.
@article{ZNSL_1995_222_a8,
author = {N. A. Shirokov},
title = {Estimates of the {Bergman} kernel for some pseudoconvex domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {222--245},
publisher = {mathdoc},
volume = {222},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a8/}
}
N. A. Shirokov. Estimates of the Bergman kernel for some pseudoconvex domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 222-245. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a8/