The Green function for the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$, and factorization of analytic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 203-221
Cet article a éte moissonné depuis la source Math-Net.Ru
An explicit integral formula is obtained for the Green function of the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$ in the unit disc of the complex plane for the case $\alpha\in(-1,0)$. The formula shows the positivity of the Green function. This is a basis for a theorem on factorization of analytic functions in the weighted Bergman spaces with the weights $w(z)=(1-|z|^2)^\alpha$ as product of a nonvanishing function and a function of special form responsible for the zeros. Bibliography: 16 titles.
@article{ZNSL_1995_222_a7,
author = {S. M. Shimorin},
title = {The {Green} function for the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$, and factorization of analytic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--221},
year = {1995},
volume = {222},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a7/}
}
TY - JOUR
AU - S. M. Shimorin
TI - The Green function for the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$, and factorization of analytic functions
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1995
SP - 203
EP - 221
VL - 222
UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a7/
LA - ru
ID - ZNSL_1995_222_a7
ER -
%0 Journal Article
%A S. M. Shimorin
%T The Green function for the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$, and factorization of analytic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 203-221
%V 222
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a7/
%G ru
%F ZNSL_1995_222_a7
S. M. Shimorin. The Green function for the weighted biharmonic operator $\Delta(1-|z|^2)^{-\alpha}\Delta$, and factorization of analytic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 203-221. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a7/