Absolutely continuous and singular subspaces of a~non-self-adjoint operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 163-202

Voir la notice de l'article provenant de la source Math-Net.Ru

For a non-self-adjoint operator with a characteristic function that has boundary values almost everywhere on the real axis, we consider some problems concerned with local absolutely continuous and singular subspaces. Bibliography: 39 titles.
@article{ZNSL_1995_222_a6,
     author = {V. A. Ryzhov},
     title = {Absolutely continuous and singular subspaces of a~non-self-adjoint operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--202},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a6/}
}
TY  - JOUR
AU  - V. A. Ryzhov
TI  - Absolutely continuous and singular subspaces of a~non-self-adjoint operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 163
EP  - 202
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a6/
LA  - ru
ID  - ZNSL_1995_222_a6
ER  - 
%0 Journal Article
%A V. A. Ryzhov
%T Absolutely continuous and singular subspaces of a~non-self-adjoint operator
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 163-202
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a6/
%G ru
%F ZNSL_1995_222_a6
V. A. Ryzhov. Absolutely continuous and singular subspaces of a~non-self-adjoint operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 163-202. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a6/