Weighted estimates of the Fourier transformation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 151-162

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fourier transformation is regarded as an operator from $\mathcal L_2(-\pi,\pi)$ to $\mathcal L_2(\mathbb R,\mu)$, where $\mu$ is a measure on the real axis $\mathbb R$. Some criteria are obtained for this operator to be bounded or compact, or to belong to some symmetrically normed ideal with the domination property. These results can be viewed as a description of the Carleson measures for the Paley–Wiener space of entire functions. Bibliography: 15 titles.
@article{ZNSL_1995_222_a5,
     author = {O. G. Parfenov},
     title = {Weighted estimates of the {Fourier} transformation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--162},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a5/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Weighted estimates of the Fourier transformation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 151
EP  - 162
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a5/
LA  - ru
ID  - ZNSL_1995_222_a5
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Weighted estimates of the Fourier transformation
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 151-162
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a5/
%G ru
%F ZNSL_1995_222_a5
O. G. Parfenov. Weighted estimates of the Fourier transformation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 151-162. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a5/