Weighted estimates of the Fourier transformation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 151-162
Voir la notice de l'article provenant de la source Math-Net.Ru
The Fourier transformation is regarded as an operator from $\mathcal L_2(-\pi,\pi)$ to $\mathcal L_2(\mathbb R,\mu)$, where $\mu$ is a measure on the real axis $\mathbb R$. Some criteria are obtained for this operator to be bounded or compact, or to belong to some symmetrically normed ideal with the domination property. These results can be viewed as a description of the Carleson measures for the Paley–Wiener space of entire functions. Bibliography: 15 titles.
@article{ZNSL_1995_222_a5,
author = {O. G. Parfenov},
title = {Weighted estimates of the {Fourier} transformation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--162},
publisher = {mathdoc},
volume = {222},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a5/}
}
O. G. Parfenov. Weighted estimates of the Fourier transformation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 151-162. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a5/