Local spectral multiplicity of a~linear operator with respect to a~measure
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 293-306

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be a bounded linear operator in a separable Banach space $\mathcal X$ and let $\mu$ be a nonnegative measure in $\mathbb C$ with compact support. A function $m_{T,\mu}$ is considered that is defined $\mu$-a.e. and has nonnegative integers or $+\infty$ as values. This function is called the local multiplicity of $T$ with respect to the measure $\mu$. This function has some natural properties, it is invariant under similarity and quasisimilarity; the local spectral multiplicity of a direct sum of operators equals the sum of local multiplicities, and so on. The definition is given in terms of the maximal diagonalization of the operator $T$. It is shown that this diagonalization is unique in the natural sense. A notion of a system of generalized eigenvectors, dual to the notion of diagonalization, is discussed. Some ezamples of evaluation of the local spectral multiplicity function are given. Bibliography: 10 titles.
@article{ZNSL_1995_222_a10,
     author = {D. V. Yakubovich},
     title = {Local spectral multiplicity of a~linear operator with respect to a~measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {293--306},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a10/}
}
TY  - JOUR
AU  - D. V. Yakubovich
TI  - Local spectral multiplicity of a~linear operator with respect to a~measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 293
EP  - 306
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a10/
LA  - ru
ID  - ZNSL_1995_222_a10
ER  - 
%0 Journal Article
%A D. V. Yakubovich
%T Local spectral multiplicity of a~linear operator with respect to a~measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 293-306
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a10/
%G ru
%F ZNSL_1995_222_a10
D. V. Yakubovich. Local spectral multiplicity of a~linear operator with respect to a~measure. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 293-306. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a10/