Boundary control and canonical realizations of a~two-velosity dynamical system
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 18-44
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the problems of controllability and realization of the dynamical systems with two types of interacting waves propagating with different velocities. A characteristic description of the reachable sets is found. The existence of the canonical realization (model) of two-velocity system is proved (the model is a one-velocity system having the same transfer operator-function). A procedure of construction of the model is based on the operator integral arising in M. Krein's triangular factorization. A dynamical interpretation of the integral is proposed. Bibliography: 7 titles.
@article{ZNSL_1995_222_a1,
author = {M. I. Belishev and S. A. Ivanov},
title = {Boundary control and canonical realizations of a~two-velosity dynamical system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--44},
publisher = {mathdoc},
volume = {222},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/}
}
TY - JOUR AU - M. I. Belishev AU - S. A. Ivanov TI - Boundary control and canonical realizations of a~two-velosity dynamical system JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 18 EP - 44 VL - 222 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/ LA - ru ID - ZNSL_1995_222_a1 ER -
M. I. Belishev; S. A. Ivanov. Boundary control and canonical realizations of a~two-velosity dynamical system. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 18-44. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/