Boundary control and canonical realizations of a~two-velosity dynamical system
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 18-44

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problems of controllability and realization of the dynamical systems with two types of interacting waves propagating with different velocities. A characteristic description of the reachable sets is found. The existence of the canonical realization (model) of two-velocity system is proved (the model is a one-velocity system having the same transfer operator-function). A procedure of construction of the model is based on the operator integral arising in M. Krein's triangular factorization. A dynamical interpretation of the integral is proposed. Bibliography: 7 titles.
@article{ZNSL_1995_222_a1,
     author = {M. I. Belishev and S. A. Ivanov},
     title = {Boundary control and canonical realizations of a~two-velosity dynamical system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--44},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Ivanov
TI  - Boundary control and canonical realizations of a~two-velosity dynamical system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 18
EP  - 44
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/
LA  - ru
ID  - ZNSL_1995_222_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Ivanov
%T Boundary control and canonical realizations of a~two-velosity dynamical system
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 18-44
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/
%G ru
%F ZNSL_1995_222_a1
M. I. Belishev; S. A. Ivanov. Boundary control and canonical realizations of a~two-velosity dynamical system. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 18-44. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/