Boundary control and canonical realizations of a two-velosity dynamical system
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 18-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problems of controllability and realization of the dynamical systems with two types of interacting waves propagating with different velocities. A characteristic description of the reachable sets is found. The existence of the canonical realization (model) of two-velocity system is proved (the model is a one-velocity system having the same transfer operator-function). A procedure of construction of the model is based on the operator integral arising in M. Krein's triangular factorization. A dynamical interpretation of the integral is proposed. Bibliography: 7 titles.
@article{ZNSL_1995_222_a1,
     author = {M. I. Belishev and S. A. Ivanov},
     title = {Boundary control and canonical realizations of a~two-velosity dynamical system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--44},
     year = {1995},
     volume = {222},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Ivanov
TI  - Boundary control and canonical realizations of a two-velosity dynamical system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 18
EP  - 44
VL  - 222
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/
LA  - ru
ID  - ZNSL_1995_222_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Ivanov
%T Boundary control and canonical realizations of a two-velosity dynamical system
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 18-44
%V 222
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/
%G ru
%F ZNSL_1995_222_a1
M. I. Belishev; S. A. Ivanov. Boundary control and canonical realizations of a two-velosity dynamical system. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 18-44. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a1/