On the existence of nontangential boundary values of pseudocontinuable functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\theta$ be an inner functions, let $\theta^*(H^2)=H^2\ominus\theta H^2$, and let $\mu$ be a finite Borel measure on the unit circle $\mathbb T$. Our main purpose is to prove that, if every function $f\in\theta^*(H^2)$ can be defined $\mu$-almost everywhere on $\mathbb T$ in a certain (weak) natural sense, then every function $f\in\theta^*(H^2)$ has finite nontangential boundary values $\mu$-almost everywhere on $\mathbb T$. A similar result is true for the $\mathcal L^p$-analog of $\theta^*(H^2)$ ($p>0$). Bibliography: 17 titles.
@article{ZNSL_1995_222_a0,
     author = {A. B. Aleksandrov},
     title = {On the existence of nontangential boundary values of pseudocontinuable functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On the existence of nontangential boundary values of pseudocontinuable functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 5
EP  - 17
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a0/
LA  - ru
ID  - ZNSL_1995_222_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On the existence of nontangential boundary values of pseudocontinuable functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 5-17
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a0/
%G ru
%F ZNSL_1995_222_a0
A. B. Aleksandrov. On the existence of nontangential boundary values of pseudocontinuable functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a0/