The Bergman kernel and the Green function
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 145-166
Cet article a éte moissonné depuis la source Math-Net.Ru
Definition of the Bergman space for an arbitrary operator is given. Sufficient conditions for the existence of the Bergman kernel for this space are obtained. For an elliptic operator, the Bergman kernel is represented via the Green function. Bibliography: 12 titles.
@article{ZNSL_1995_221_a9,
author = {V. A. Malyshev},
title = {The {Bergman} kernel and the {Green} function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--166},
year = {1995},
volume = {221},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/}
}
V. A. Malyshev. The Bergman kernel and the Green function. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 145-166. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/