The Bergman kernel and the Green function
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 145-166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Definition of the Bergman space for an arbitrary operator is given. Sufficient conditions for the existence of
the Bergman kernel for this space are obtained. For an elliptic operator, the Bergman kernel is represented via
the Green function. Bibliography: 12 titles.
			
            
            
            
          
        
      @article{ZNSL_1995_221_a9,
     author = {V. A. Malyshev},
     title = {The {Bergman} kernel and the {Green} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--166},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/}
}
                      
                      
                    V. A. Malyshev. The Bergman kernel and the Green function. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 145-166. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/