The Bergman kernel and the Green function
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 145-166

Voir la notice de l'article provenant de la source Math-Net.Ru

Definition of the Bergman space for an arbitrary operator is given. Sufficient conditions for the existence of the Bergman kernel for this space are obtained. For an elliptic operator, the Bergman kernel is represented via the Green function. Bibliography: 12 titles.
@article{ZNSL_1995_221_a9,
     author = {V. A. Malyshev},
     title = {The {Bergman} kernel and the {Green} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--166},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/}
}
TY  - JOUR
AU  - V. A. Malyshev
TI  - The Bergman kernel and the Green function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 145
EP  - 166
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/
LA  - ru
ID  - ZNSL_1995_221_a9
ER  - 
%0 Journal Article
%A V. A. Malyshev
%T The Bergman kernel and the Green function
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 145-166
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/
%G ru
%F ZNSL_1995_221_a9
V. A. Malyshev. The Bergman kernel and the Green function. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 145-166. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a9/