Flows generated by symmetric functions of the eigenvalues of the Hessian
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 127-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The global unique solvability of the first initial-boundary value problem for fully nonlinear equations of the form $$ -u_t+f(\lambda_1[u],\dots,\lambda_n[u])=g $$ is proved. Here, $\lambda_i[u]$, $i=1,\dots,n$, are eigenvalues of the Hessian $u_{xx}$ and $f$ is a symmetric function satisfying some conditions. Bibliography: 7 titles.
@article{ZNSL_1995_221_a8,
     author = {N. Ivochkina and O. Ladyzhenskaya},
     title = {Flows generated by symmetric functions of the eigenvalues of the {Hessian}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--144},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/}
}
TY  - JOUR
AU  - N. Ivochkina
AU  - O. Ladyzhenskaya
TI  - Flows generated by symmetric functions of the eigenvalues of the Hessian
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 127
EP  - 144
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/
LA  - en
ID  - ZNSL_1995_221_a8
ER  - 
%0 Journal Article
%A N. Ivochkina
%A O. Ladyzhenskaya
%T Flows generated by symmetric functions of the eigenvalues of the Hessian
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 127-144
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/
%G en
%F ZNSL_1995_221_a8
N. Ivochkina; O. Ladyzhenskaya. Flows generated by symmetric functions of the eigenvalues of the Hessian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 127-144. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/