Flows generated by symmetric functions of the eigenvalues of the Hessian
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 127-144
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The global unique solvability of the first initial-boundary value problem for fully nonlinear equations of the form 
$$
-u_t+f(\lambda_1[u],\dots,\lambda_n[u])=g
$$
is proved. Here, $\lambda_i[u]$, $i=1,\dots,n$, are eigenvalues of the Hessian $u_{xx}$ and $f$ is a symmetric function satisfying some conditions. Bibliography: 7 titles.
			
            
            
            
          
        
      @article{ZNSL_1995_221_a8,
     author = {N. Ivochkina and O. Ladyzhenskaya},
     title = {Flows generated by symmetric functions of the eigenvalues of the {Hessian}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--144},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/}
}
                      
                      
                    TY - JOUR AU - N. Ivochkina AU - O. Ladyzhenskaya TI - Flows generated by symmetric functions of the eigenvalues of the Hessian JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 127 EP - 144 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/ LA - en ID - ZNSL_1995_221_a8 ER -
N. Ivochkina; O. Ladyzhenskaya. Flows generated by symmetric functions of the eigenvalues of the Hessian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 127-144. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/