Flows generated by symmetric functions of the eigenvalues of the Hessian
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 127-144
Cet article a éte moissonné depuis la source Math-Net.Ru
The global unique solvability of the first initial-boundary value problem for fully nonlinear equations of the form $$ -u_t+f(\lambda_1[u],\dots,\lambda_n[u])=g $$ is proved. Here, $\lambda_i[u]$, $i=1,\dots,n$, are eigenvalues of the Hessian $u_{xx}$ and $f$ is a symmetric function satisfying some conditions. Bibliography: 7 titles.
@article{ZNSL_1995_221_a8,
author = {N. Ivochkina and O. Ladyzhenskaya},
title = {Flows generated by symmetric functions of the eigenvalues of the {Hessian}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--144},
year = {1995},
volume = {221},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/}
}
N. Ivochkina; O. Ladyzhenskaya. Flows generated by symmetric functions of the eigenvalues of the Hessian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 127-144. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a8/