On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 75-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a problem of diffraction a plane acoustic wave by a arbitrary shape cone. The spherical wave is created at the result of the scattering by the cone vertex. Our problem consist of a calculation of this wave in a high frequency approximation. The calculations are based on a Smyshlyaev's formula (see [2], [3]). The acoustic wave potential satisfies to Neumann's condition on the boundary of the cone. A same problem (in Dirichlet's boundary condition) was considered in [8]. In this paper we can use the method of calculation near to method used in [8]. Bibliography: 8 titles.
@article{ZNSL_1995_221_a5,
     author = {Daniel Dement'ev},
     title = {On the diffraction of high-frequency waves by arbitrary shape cone. {Neumann} case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a5/}
}
TY  - JOUR
AU  - Daniel Dement'ev
TI  - On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 75
EP  - 82
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a5/
LA  - en
ID  - ZNSL_1995_221_a5
ER  - 
%0 Journal Article
%A Daniel Dement'ev
%T On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 75-82
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a5/
%G en
%F ZNSL_1995_221_a5
Daniel Dement'ev. On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 75-82. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a5/