On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 30-57

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of generalized solutions of model nonlinear elliptic systems of second order are studied in the semiball $B^+_1=B_1(0)\cap\{x_n>0\}\subset\mathbb R^n$, with the oblique derivative type boundary condition on $\Gamma_1=B_1(0)\cap\{x_n=0\}$. For solutions $u\in H^1(B_1^+)$ of systems of the form $\frac d{dx_\alpha}a^k_\alpha(u_x)=0$, $k\le N$, it is proved that the derivatives $u_x$ are Hölder in $(B^+_1\cup\Gamma_1)\setminus\Sigma$, where $\mathcal H_{n-p}(\Sigma)=0$, $p>2$. It is shown for continuous solutions $u$ from $H^1(B_1^+)$ of systems $\frac d{dx_\alpha}a^k_\alpha(u,u_x)=0$ that the derivatives $u_x$ are Hölder on the set $(B^+_1\cup\Gamma_1)\setminus\Sigma$, $\dim_\mathcal H\Sigma\le n-2$. Bibliography: 13 titles.
@article{ZNSL_1995_221_a2,
     author = {A. A. Arkhipova},
     title = {On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--57},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a2/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 30
EP  - 57
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a2/
LA  - ru
ID  - ZNSL_1995_221_a2
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 30-57
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a2/
%G ru
%F ZNSL_1995_221_a2
A. A. Arkhipova. On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 30-57. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a2/