Existence of solutions of nonlinear degenerate systems of parabolic variational inequalities
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 243-252
Voir la notice de l'article provenant de la source Math-Net.Ru
Systems of degenerated parabolic inequalities with an operator of gradient type are investigated. A Galerkin-type argument is applied to approximate these systems by a sequence of time dependent variational inequalities in finite-dimensional spaces. Bibliography: 1 title.
@article{ZNSL_1995_221_a15,
author = {M. Fuchs},
title = {Existence of solutions of nonlinear degenerate systems of parabolic variational inequalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {243--252},
publisher = {mathdoc},
volume = {221},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a15/}
}
TY - JOUR AU - M. Fuchs TI - Existence of solutions of nonlinear degenerate systems of parabolic variational inequalities JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 243 EP - 252 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a15/ LA - en ID - ZNSL_1995_221_a15 ER -
M. Fuchs. Existence of solutions of nonlinear degenerate systems of parabolic variational inequalities. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 243-252. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a15/