A priori error estimates of variational-difference methods for Hencky plasticity problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 226-234

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, convergence of equilibrium finite-element approximations for variational problems of the Hencky plasticity is analyzed. To obtain a priori error estimates, two regularized problems are considered and additional differentiability properties of their solutions are investigated. This allows us to prove that there is a relation between the parameters of regularization and sampling such that equilibrium approximations of the regularized problems produce a sequence of tensor-functions converging to the solution of the perfectly elasto-plastic problem. Convergence estimates are established. Bibliography: 12 titles.
@article{ZNSL_1995_221_a13,
     author = {S. I. Repin},
     title = {A priori error estimates of variational-difference methods for {Hencky} plasticity problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {226--234},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a13/}
}
TY  - JOUR
AU  - S. I. Repin
TI  - A priori error estimates of variational-difference methods for Hencky plasticity problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 226
EP  - 234
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a13/
LA  - ru
ID  - ZNSL_1995_221_a13
ER  - 
%0 Journal Article
%A S. I. Repin
%T A priori error estimates of variational-difference methods for Hencky plasticity problems
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 226-234
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a13/
%G ru
%F ZNSL_1995_221_a13
S. I. Repin. A priori error estimates of variational-difference methods for Hencky plasticity problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 226-234. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a13/