Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 208-225

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we give a proof of the existence theorem for an equilibrium state for the surface tension coefficient $\sigma=0$ and investigate the behavior of the equilibrium state for small $\sigma$. Bibliography: 4 titles.
@article{ZNSL_1995_221_a12,
     author = {V. G. Osmolovski},
     title = {Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {208--225},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/}
}
TY  - JOUR
AU  - V. G. Osmolovski
TI  - Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 208
EP  - 225
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/
LA  - ru
ID  - ZNSL_1995_221_a12
ER  - 
%0 Journal Article
%A V. G. Osmolovski
%T Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 208-225
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/
%G ru
%F ZNSL_1995_221_a12
V. G. Osmolovski. Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 208-225. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/