Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 208-225
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we give a proof of the existence theorem for an equilibrium state for the surface tension coefficient $\sigma=0$ and investigate the behavior of the equilibrium state for small $\sigma$. Bibliography: 4 titles.
@article{ZNSL_1995_221_a12,
author = {V. G. Osmolovski},
title = {Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {208--225},
publisher = {mathdoc},
volume = {221},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/}
}
TY - JOUR AU - V. G. Osmolovski TI - Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 208 EP - 225 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/ LA - ru ID - ZNSL_1995_221_a12 ER -
V. G. Osmolovski. Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 208-225. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a12/