Nonlocal problems for the equations of Kelvin--Voight fluids and their $\varepsilon$-approximations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 185-207

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study some nonlocal problems for the Kelvin–Voight equations (1) and the penalized Kelvin–Voight equations (2): the first and second initial boundary-value problems and the first and second time periodic boundary problems. We prove that these problems have global smooth solutions of the class $W^1_\infty(\mathbb R^+;W_2^{2+k}(\Omega))$, $k=1,2,\dots$; $\Omega\subset\mathbb R^3$. Bibliography: 25 titles.
@article{ZNSL_1995_221_a11,
     author = {A. P. Oskolkov},
     title = {Nonlocal problems for the equations of {Kelvin--Voight} fluids and their $\varepsilon$-approximations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {185--207},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a11/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Nonlocal problems for the equations of Kelvin--Voight fluids and their $\varepsilon$-approximations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 185
EP  - 207
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a11/
LA  - ru
ID  - ZNSL_1995_221_a11
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Nonlocal problems for the equations of Kelvin--Voight fluids and their $\varepsilon$-approximations
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 185-207
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a11/
%G ru
%F ZNSL_1995_221_a11
A. P. Oskolkov. Nonlocal problems for the equations of Kelvin--Voight fluids and their $\varepsilon$-approximations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 185-207. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a11/