On the behavior of free boundaries near the boundary of the domain
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 5-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $u$ be a solution of the obstacle problem $u\ge0$, $-\Delta u+f\ge0$, $u(-\Delta u+f)=0$ in a domain $\Omega\subset\mathbb R^n$. In this paper, the behaviour of the free boundary in a neighborhood of $\partial\Omega$ is studied. It is proved that under some conditions the free boundary touches $\partial\Omega$ at contact points. Bibliography: 4 titles.
			
            
            
            
          
        
      @article{ZNSL_1995_221_a0,
     author = {D. E. Apushkinskaya and N. N. Uraltseva},
     title = {On the behavior of free boundaries near the boundary of the domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {221},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a0/}
}
                      
                      
                    TY - JOUR AU - D. E. Apushkinskaya AU - N. N. Uraltseva TI - On the behavior of free boundaries near the boundary of the domain JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 5 EP - 19 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a0/ LA - ru ID - ZNSL_1995_221_a0 ER -
D. E. Apushkinskaya; N. N. Uraltseva. On the behavior of free boundaries near the boundary of the domain. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a0/