On the behavior of free boundaries near the boundary of the domain
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 5-19
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $u$ be a solution of the obstacle problem $u\ge0$, $-\Delta u+f\ge0$, $u(-\Delta u+f)=0$ in a domain $\Omega\subset\mathbb R^n$. In this paper, the behaviour of the free boundary in a neighborhood of $\partial\Omega$ is studied. It is proved that under some conditions the free boundary touches $\partial\Omega$ at contact points. Bibliography: 4 titles.
@article{ZNSL_1995_221_a0,
author = {D. E. Apushkinskaya and N. N. Uraltseva},
title = {On the behavior of free boundaries near the boundary of the domain},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
year = {1995},
volume = {221},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a0/}
}
D. E. Apushkinskaya; N. N. Uraltseva. On the behavior of free boundaries near the boundary of the domain. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Tome 221 (1995), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_1995_221_a0/