Saturated calculus for Horn-like sequents of a complete class of a linear temporal first order logic
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IX, Tome 220 (1995), pp. 123-144
Cet article a éte moissonné depuis la source Math-Net.Ru
A saturated calculus for the so-called Horn-like sequents of a complete class of a linear temporal logic of the first order is described. The saturated calculus contains neither induction-like postulates nor cut-like rules. Instead of induction-like postulates the saturated calculus contains a finite set of “saturated” sequents, which (1) capture and reflect the periodic structure of inductive reasoning (i.e., a reasoning which applies inductionlike postulates); (2) show that “almost nothing new” can be obtained by continuing the process of derivation of a given sequent; (3) present an explicit way of generating the so-called invariant formula in induction-like rules. The saturated calculus for Horn-like sequents allows one: (1) to prove in an obvious way the completeness of a restricted linear temporal logic of the first order; (2) to construct a computer-aided proof system for this logic; (3) to prove the decidability of this logic for logically decidable Horn-like sequents. Bibliography: 15 titles.
@article{ZNSL_1995_220_a7,
author = {Regimantas Pliu\v{s}kevi\v{c}ius},
title = {Saturated calculus for {Horn-like} sequents of a~complete class of a~linear temporal first order logic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--144},
year = {1995},
volume = {220},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a7/}
}
TY - JOUR AU - Regimantas Pliuškevičius TI - Saturated calculus for Horn-like sequents of a complete class of a linear temporal first order logic JO - Zapiski Nauchnykh Seminarov POMI PY - 1995 SP - 123 EP - 144 VL - 220 UR - http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a7/ LA - ru ID - ZNSL_1995_220_a7 ER -
Regimantas Pliuškevičius. Saturated calculus for Horn-like sequents of a complete class of a linear temporal first order logic. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IX, Tome 220 (1995), pp. 123-144. http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a7/