Infinite sets of primes, admitting Diophantine representations in eight variables
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IX, Tome 220 (1995), pp. 36-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of infinite sets of primes which can be repesented as the sets of positive values of some polynomials in a small number of variables is discussed. (All variables range over positive integers.) It is proved (noneffectively) that there exists such a set, which has a representation with eight variables. This number of variables is smaller than in the best universal construction known today, which is ten. Also, some improvements of well-known technical lemmas are given. Bibliography: 16 titles.
@article{ZNSL_1995_220_a2,
     author = {M. A. Vsemirnov},
     title = {Infinite sets of primes, admitting {Diophantine} representations in eight variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--48},
     publisher = {mathdoc},
     volume = {220},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a2/}
}
TY  - JOUR
AU  - M. A. Vsemirnov
TI  - Infinite sets of primes, admitting Diophantine representations in eight variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 36
EP  - 48
VL  - 220
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a2/
LA  - ru
ID  - ZNSL_1995_220_a2
ER  - 
%0 Journal Article
%A M. A. Vsemirnov
%T Infinite sets of primes, admitting Diophantine representations in eight variables
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 36-48
%V 220
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a2/
%G ru
%F ZNSL_1995_220_a2
M. A. Vsemirnov. Infinite sets of primes, admitting Diophantine representations in eight variables. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IX, Tome 220 (1995), pp. 36-48. http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a2/