Models of linear logic
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IX, Tome 220 (1995), pp. 23-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We engage a study of non-modal linear logic which takes times $\otimes$ and the linear conditional $\multimap$ to be the basic connectives instead of times and linear negation $()^\bot$ as in Girard's approach. This difference enables us to obtain a very large subsystem of linear logic (called positive linear logic) without an involutionary negation (if the law of double negation is removed from linear logic in Girard's formulation, the resulting subsystem is extremely limited). Our approach enables us to obtain several natural models for various subsystems of linear logic, including a generic model for so-called minimal linear logic. In particular, it is seen that these models arise spontaneously in the transition from set theory to multiset theory. We also construct a model of full (nonmodal) linear logic that is generic relative to any model of positive linear logic. However, the problem of constructing a generic model for positive linear logic remains open. Bibliography: 2 titles.
@article{ZNSL_1995_220_a1,
     author = {Marc Bergeron and William Hatcher},
     title = {Models of linear logic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {220},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a1/}
}
TY  - JOUR
AU  - Marc Bergeron
AU  - William Hatcher
TI  - Models of linear logic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 23
EP  - 35
VL  - 220
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a1/
LA  - en
ID  - ZNSL_1995_220_a1
ER  - 
%0 Journal Article
%A Marc Bergeron
%A William Hatcher
%T Models of linear logic
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 23-35
%V 220
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a1/
%G en
%F ZNSL_1995_220_a1
Marc Bergeron; William Hatcher. Models of linear logic. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IX, Tome 220 (1995), pp. 23-35. http://geodesic.mathdoc.fr/item/ZNSL_1995_220_a1/