Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 186-212

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the global classical solvability of the first initial boundary-value problem for the three-dimensional perturbed equations (33), (34), (38) and (39), and also we study the convergence as $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first initial boundary-value problem for the equations (1) and (2). Bibliography: 19 titles.
@article{ZNSL_1994_219_a8,
     author = {A. P. Oskolkov},
     title = {Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of {Kelvin--Voight} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--212},
     publisher = {mathdoc},
     volume = {219},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 186
EP  - 212
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/
LA  - ru
ID  - ZNSL_1994_219_a8
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 186-212
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/
%G ru
%F ZNSL_1994_219_a8
A. P. Oskolkov. Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 186-212. http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/