Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 186-212
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the global classical solvability of the first initial boundary-value problem for the three-dimensional perturbed equations (33), (34), (38) and (39), and also we study the convergence as $\varepsilon\to0$ of solutions of all these perturbed problems to the classical solutions of the first initial boundary-value problem for the equations (1) and (2). Bibliography: 19 titles.
@article{ZNSL_1994_219_a8,
author = {A. P. Oskolkov},
title = {Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of {Kelvin--Voight} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {186--212},
publisher = {mathdoc},
volume = {219},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/}
}
TY - JOUR AU - A. P. Oskolkov TI - Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1994 SP - 186 EP - 212 VL - 219 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/ LA - ru ID - ZNSL_1994_219_a8 ER -
%0 Journal Article %A A. P. Oskolkov %T Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids %J Zapiski Nauchnykh Seminarov POMI %D 1994 %P 186-212 %V 219 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/ %G ru %F ZNSL_1994_219_a8
A. P. Oskolkov. Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin--Voight fluids. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 186-212. http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a8/