The convergence of certain incomplete block factorization splittings
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 42-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This note fills a logical gap in the theory of incomplete block factorizations of generalized SSOR type. Namely, it shows that using the so-called factorized sparse approximate inverses it is possible to preserve the symmetry of an original Stieltjes or positive definite $H$-matrix $A$ in its incomplete block factorization $K$ and to ensure simultaneously the convergence of the related splitting $A=K-R$. Bibliography: 3 titles.
			
            
            
            
          
        
      @article{ZNSL_1994_219_a1,
     author = {L. Yu. Kolotilina},
     title = {The convergence of certain incomplete block factorization splittings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {219},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a1/}
}
                      
                      
                    L. Yu. Kolotilina. The convergence of certain incomplete block factorization splittings. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 42-52. http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a1/