The convergence of certain incomplete block factorization splittings
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 42-52
Cet article a éte moissonné depuis la source Math-Net.Ru
This note fills a logical gap in the theory of incomplete block factorizations of generalized SSOR type. Namely, it shows that using the so-called factorized sparse approximate inverses it is possible to preserve the symmetry of an original Stieltjes or positive definite $H$-matrix $A$ in its incomplete block factorization $K$ and to ensure simultaneously the convergence of the related splitting $A=K-R$. Bibliography: 3 titles.
@article{ZNSL_1994_219_a1,
author = {L. Yu. Kolotilina},
title = {The convergence of certain incomplete block factorization splittings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--52},
year = {1994},
volume = {219},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a1/}
}
L. Yu. Kolotilina. The convergence of certain incomplete block factorization splittings. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part X, Tome 219 (1994), pp. 42-52. http://geodesic.mathdoc.fr/item/ZNSL_1994_219_a1/